| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|基于改进K-means算法的RFAT客户细分研究

基于改进K-means算法的RFAT客户细分研究

刘芝怡 陈功

南京理工大学学报(自然科学版)Issue(4):531-536,6.
南京理工大学学报(自然科学版)Issue(4):531-536,6.

基于改进K-means算法的RFAT客户细分研究

RFAT customer segmentation based on improved K-means algorithm

刘芝怡 1陈功2

作者信息

  • 1. 常州工学院 计算机信息工程学院,江苏 常州213002
  • 2. 常州工学院 电子信息与电气工程学院,江苏 常州213002
  • 折叠

摘要

Abstract

The traditional K-means algorithm has sensitivity to the initial cluster centers,meanwhile it is difficult for users to determine the optimal number of clusters in advance. In order to solve these problems,a new improved K-means algorithm is proposed here. The algorithm can optimize the initial center points through computing the maximum distance of objects. At the same time,it can find the optimal number of clusters by using a new evaluation function. The results can reduce the dependence on the parameters. When the improved algorithm is used to analyze customers of a firm, the RFAT customer classification model is proposed. The new model has four segmentation variables to assess the customer’s value:Recency, Frequency, Average Monetary and Trend. The customers RFAT-value is analyzed by using clustering. The business strategy for different customer groups is also pointed out. The application results show that the RFAT model and the improved K-means algorithm proposed here can classify customers effectively. It also can fully reflect the customer’s current value and appreciation potential.

关键词

客户分类/购买时间/购买频次/平均购买额/购买倾向/K-means算法/初始聚类中心/聚类数

Key words

customer classification/recency/frequency/average monetary/trentd/K-means algorithm/initial clustering centers/number of clusters

分类

信息技术与安全科学

引用本文复制引用

刘芝怡,陈功..基于改进K-means算法的RFAT客户细分研究[J].南京理工大学学报(自然科学版),2014,(4):531-536,6.

基金项目

江苏省自然科学基金(BK20130245) (BK20130245)

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文