| 注册
首页|期刊导航|南京师大学报(自然科学版)|Hadoop下并行BP神经网络骆马湖水质分类

Hadoop下并行BP神经网络骆马湖水质分类

鞠训光 邵晓根 鲍蓉 徐德兰 王海鹰

南京师大学报(自然科学版)Issue(1):52-56,5.
南京师大学报(自然科学版)Issue(1):52-56,5.

Hadoop下并行BP神经网络骆马湖水质分类

Based on Parallel BP Neural Network of Classification on Water Quality of Luoma Lake Under Hadoop

鞠训光 1邵晓根 1鲍蓉 1徐德兰 2王海鹰1

作者信息

  • 1. 徐州工程学院信电工程学院,江苏 徐州221111
  • 2. 徐州工程学院环境工程学院,江苏 徐州221111
  • 折叠

摘要

Abstract

Research the advantage of using the mechanism of computing to data migration and MapReduce parallel processing of massive data,to solve the bottlenecks problem on large amount of computing and network training time when the BP neural network in dealing with a large sample data. Its constructed water quality evaluation model based on the pollution influence factors of Luoma Lake and mined the water quality classification of Luoma Lake by applied the parallel BP algorithm under Hadoop. Mining analysis results is meaningful of decision support for the water quality optimization and ecological remediation of Luoma Lake.

关键词

骆马湖水质分类/Hadoop/并行BP神经网络

Key words

water quality of Luoma Lake/Hadoop/parallel BP neural network

分类

信息技术与安全科学

引用本文复制引用

鞠训光,邵晓根,鲍蓉,徐德兰,王海鹰..Hadoop下并行BP神经网络骆马湖水质分类[J].南京师大学报(自然科学版),2014,(1):52-56,5.

基金项目

科技部国家中小企业创新基金(11C26213204533)、徐州市科技计划(XF11C052)、住房与城乡建设部科学技术计划(2011-K6-27) (11C26213204533)

南京师大学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-4616

访问量0
|
下载量0
段落导航相关论文