| 注册
首页|期刊导航|南京师大学报(自然科学版)|基于小波分析的无线传感网实时异常检测算法

基于小波分析的无线传感网实时异常检测算法

李致远 朱求志 吴永焜 唐振宇 胡华明

南京师大学报(自然科学版)Issue(1):87-92,6.
南京师大学报(自然科学版)Issue(1):87-92,6.

基于小波分析的无线传感网实时异常检测算法

Wavelet Analysis-Based Real-Time Anomaly Detection Algorithm for Wireless Sensor Network

李致远 1朱求志 1吴永焜 1唐振宇 1胡华明1

作者信息

  • 1. 江苏大学计算机科学与通信工程学院,江苏 镇江212013
  • 折叠

摘要

Abstract

Anomaly detection can detect new and unknown attacks,which has great significance on the wireless sensor networks security. Nowadays,the proposed anomaly detection schemes has poor real-time,high false positive rate and the large amount of computational overhead, and hence the schemes are not suitable for wireless sensor networks. In this paper,a wavelet analysis-based real-time anomaly detection ( Wavelet Analysis-based Real-time Anomaly Detection, WARAD) algorithm for wireless sensor network is proposed. Throughout the detecting process, the WARAD algorithm reversely collects the real-time network traffic,and then uses the variance of the wavelet coefficients in the small-scale interval to compute the Hurst values,which can improve the real-time and the accuracy of anomaly detection,and reduce the computational complexity of solving the Hurst values. Finally,the WARAD algorithm-based intrusion detection system is implemented on the platform of MeshIDE. The experimental results showed that the proposed algorithm greatly improved the real-time of anomaly detection for wireless sensor networks,and reduced the false positive rate and the false negative rate of anomaly detection.

关键词

无线传感器网络/安全/异常检测/小波分析/Hurst参数

Key words

wireless sensor networks/security/anomaly detection/wavelet analysis/Hurst parameter

分类

信息技术与安全科学

引用本文复制引用

李致远,朱求志,吴永焜,唐振宇,胡华明..基于小波分析的无线传感网实时异常检测算法[J].南京师大学报(自然科学版),2014,(1):87-92,6.

基金项目

国家自然科学基金(61202474、61103195)、江苏省自然科学基金( BK20130528)、江苏大学高级专业人才科研启动基金项目(12JDG049)、江苏大学本科生创新计划项目(2012075) (61202474、61103195)

南京师大学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-4616

访问量0
|
下载量0
段落导航相关论文