| 注册
首页|期刊导航|软件导刊|协同过滤算法改进及研究

协同过滤算法改进及研究

苏杨茜

软件导刊Issue(2):74-77,4.
软件导刊Issue(2):74-77,4.DOI:10.11907/rjdk.104179

协同过滤算法改进及研究

Collaborative Filtering Algorithm Improvements and Research

苏杨茜1

作者信息

  • 1. 中南民族大学计算机科学学院,湖北武汉430074
  • 折叠

摘要

Abstract

Targeting the sparsity problem of collaborative filtering ,an improved method- -BAS algorithms is proposed . The algorithm combines the Bayesian measure of dimensionality reduction and singular value decomposition method ,ob‐tained the neighbors of active users based on traditional singular value decomposition method ,to get the final predicted value w hich provided to users through improved similarity measure .Experimental results show that the method used in the data set can effectively alleviate the data sparseness problem ,and can improve the recommendation accuracy ,and the recommendation quality of engine to a certain extent .

关键词

推荐引擎/协同过滤算法/数据稀疏/奇异值分解

Key words

Recommendation Engine/Collaborative Filtering Algorithm/Data Sparse/Singular Value Decomposition

分类

信息技术与安全科学

引用本文复制引用

苏杨茜..协同过滤算法改进及研究[J].软件导刊,2015,(2):74-77,4.

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文