| 注册
首页|期刊导航|热力发电|提高汽轮机排汽焓在线预测精度的 GA-Elman 神经网络算法

提高汽轮机排汽焓在线预测精度的 GA-Elman 神经网络算法

王建国 赵帅 王广雨

热力发电Issue(10):90-94,5.
热力发电Issue(10):90-94,5.DOI:10.3969/j.issn.1002-3364.2014.10.090

提高汽轮机排汽焓在线预测精度的 GA-Elman 神经网络算法

A GA-Elman neural network algorithm which can improve online prediction accuracy of exhaust enthalpy for steam turbines

王建国 1赵帅 1王广雨1

作者信息

  • 1. 东北电力大学自动化工程学院,吉林 吉林 132012
  • 折叠

摘要

Abstract

By taking use of good optimizing ability of the genetic algorithm (GA),the dynamic recurrent neural network (Elman)of steam turbine exhaust enthalpy was optimized and a GA-Elman neural network prediction model was established.Taking a 350 MW unit steam turbine as the example,online calculation for the turbine exhaust enthalpy was conducted by applying this model.The results show that:this GA-El-man neural network model overcomes such problems as easy to fall into local minimum,slow convergence speed and low precision that the conventional Elman neural network (which applies gradient descent meth-od to conduct training)has.So this model enhances the prediction accuracy and convergence speed,which is more suitable for field application.

关键词

汽轮机/排汽焓/在线计算/预测精度/Elman/GA

Key words

steam turbine/exhaust enthalpy/online calculation/prediction accuracy/Elman/GA

分类

能源科技

引用本文复制引用

王建国,赵帅,王广雨..提高汽轮机排汽焓在线预测精度的 GA-Elman 神经网络算法[J].热力发电,2014,(10):90-94,5.

基金项目

国家自然科学基金资助项目(51176028) (51176028)

吉林省自然科学基金资助项目(201115179) (201115179)

热力发电

OA北大核心CSTPCD

1002-3364

访问量0
|
下载量0
段落导航相关论文