| 注册
首页|期刊导航|人民黄河|基于 SVM-ARIMA的大坝变形预测模型

基于 SVM-ARIMA的大坝变形预测模型

沈寿亮 刘天祥 宋锦焘 姜彦作 梁睿斌

人民黄河Issue(5):99-101,3.
人民黄河Issue(5):99-101,3.DOI:10.3969/j.issn.1000-1379.2014.05.031

基于 SVM-ARIMA的大坝变形预测模型

SVM-ARIMA Forecasting Model for Dam Deformation

沈寿亮 1刘天祥 2宋锦焘 3姜彦作 1梁睿斌2

作者信息

  • 1. 河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098
  • 2. 河海大学水资源高效利用与工程安全国家工程研究中心,江苏南京210098
  • 3. 河海大学水利水电学院,江苏南京210098
  • 折叠

摘要

Abstract

The monitoring data of the dam deformation is a nonlinear and non-stationary time series. After the introduction of kernel function,sup-port vector machine can solve the nonlinear problem effectively,so support vector machine was used to predict the dam deformation. In order to im-prove the prediction accuracy,ARIMA model was used to further analysis the residual series,therefore,SVM-ARIMA combination model was es-tablished to predict the dam deformation. The time series of dam deformation was divided into two parts:the trend term and the error term,they were predicted by SVM and ARIMA models respectively,the sum of the two parts was the final predicted value. At last,there was a comparison be-tween the measured data and the predicted one combined with a project. The result indicates that the accuracy of the SVM-ARIMA model is high, completely meeting the project needs.

关键词

大坝变形/预测模型/支持向量机/ARIMA

Key words

dam deformation/forecasting model/support vector machine/ARIMA

分类

建筑与水利

引用本文复制引用

沈寿亮,刘天祥,宋锦焘,姜彦作,梁睿斌..基于 SVM-ARIMA的大坝变形预测模型[J].人民黄河,2014,(5):99-101,3.

基金项目

国家自然科学基金资助项目(51179066,51139001);新世纪优秀人才支持计划资助项目(NCET-10-0359);江苏省杰出青年基金项目(BK2012036);水利部公益性行业科研专项(201301061,201201038);江苏高校优势学科建设工程资助项目(水利工程)(YS11001)。 ()

人民黄河

OA北大核心

1000-1379

访问量0
|
下载量0
段落导航相关论文