| 注册
首页|期刊导航|水利学报|含水层渗透系数预测及不确定性分析耦合模型

含水层渗透系数预测及不确定性分析耦合模型

桂春雷 石建省 刘继朝 马荣

水利学报Issue(5):521-528,8.
水利学报Issue(5):521-528,8.DOI:10.13243/j.cnki.slxb.2014.05.003

含水层渗透系数预测及不确定性分析耦合模型

A coupling model for aquifer hydraulic conductivity prediction and its uncertainty analysis

桂春雷 1石建省 1刘继朝 1马荣1

作者信息

  • 1. 中国地质科学院 水文地质环境地质研究所,河北 石家庄 050061
  • 折叠

摘要

Abstract

This study aims at fine calculation of alluvial-proluvial plain region and providing fundamental data for construction of solute transport model in the further research. Hydraulic conductivities of aquifers in the study area are predicted through establishing a coupling model between artificial neural network (ANN) and generalized likelihood uncertainty estimation (GLUE), and uncertainty of the model parameters is analyzed. Markov Chain Monte Carlo (MCMC) was used to replace Monte Carlo (MC) in common GLUE, and coupled it with artificial neural network technology, an overall model of aquifer hydraulic con-ductivity prediction and its uncertainty analysis (GLUE-ANN) was built by using 150 typical grain-size fraction samples as input data. Via case study in a typical area of North China Plain the study corroborates a better sampling efficiency and optimization capability; compared to measured values of hydraulic conductivi-ty, relative errors of the GLUE-ANN model are between 1.55 % and 23.53 %, the calculation precision of the model meets the requirements of groundwater resources assessment. By posterior distributions of the mod-el parameters, the areas of parameter global optimum are obtained, which indicates the model is capable of reasonably reflecting parameter uncertainty of hydrogeological model.

关键词

渗透系数/ANN技术/贝叶斯方法/GLUE/MCMC/不确定性

Key words

hydraulic conductivity/ANN/Bayesian/GLUE/MCMC/uncertainty

分类

天文与地球科学

引用本文复制引用

桂春雷,石建省,刘继朝,马荣..含水层渗透系数预测及不确定性分析耦合模型[J].水利学报,2014,(5):521-528,8.

基金项目

国家重点基础研究发展计划(973)计划项目(20100CB428800);中国地质科学院水文地质环境地质研究所项目 ()

水利学报

OA北大核心CSCDCSTPCD

0559-9350

访问量0
|
下载量0
段落导航相关论文