| 注册
首页|期刊导航|计算机技术与发展|一种改进的K-means数字资源聚类算法

一种改进的K-means数字资源聚类算法

杨永涛 李静

计算机技术与发展Issue(6):107-109,113,4.
计算机技术与发展Issue(6):107-109,113,4.DOI:10.3969/j.issn.1673-629X.2014.06.027

一种改进的K-means数字资源聚类算法

An Improved K-means Clustering Algorithm for Digital Resources

杨永涛 1李静2

作者信息

  • 1. 燕山大学 信息化处,河北 秦皇岛066004
  • 2. 燕山大学 信息科学与工程学院,河北 秦皇岛066004
  • 折叠

摘要

Abstract

K-means clustering algorithm is a basic analysis method in data mining closeting analysis,which is also the most widely used partitioning algorithm. In this paper,in order to get more fast and effective clustering result from large number of digital resources in digit-al library,aiming at the problems of the traditional K-means algorithm,combining with the features of the digital resources,an improved selection algorithm based on the keyword feature vector for initial clustering center is proposed. On this basis,the traditional K-means clustering algorithm is improved for digital resources clustering and experiment verification. The analysis results show that the algorithm proposed reduces the digital resources clustering cost,improves the clustering efficiency,verifying the feasibility of the algorithm.

关键词

K-means算法/数字资源/相似度/初始聚类中心

Key words

K-means clustering algorithm/digital resource/similarity/initial clustering center

分类

信息技术与安全科学

引用本文复制引用

杨永涛,李静..一种改进的K-means数字资源聚类算法[J].计算机技术与发展,2014,(6):107-109,113,4.

基金项目

河北省自然科学基金面上项目(F2013203324) (F2013203324)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文