| 注册
首页|期刊导航|计算机技术与发展|改进的二叉树支持向量机在多分类中的应用

改进的二叉树支持向量机在多分类中的应用

李燕玲 苏一丹

计算机技术与发展Issue(7):181-184,4.
计算机技术与发展Issue(7):181-184,4.DOI:10.3969/j.issn.1673-629X.2014.07.045

改进的二叉树支持向量机在多分类中的应用

Application of Improved Binary Tree Support Vector Machine in Multi-classification

李燕玲 1苏一丹1

作者信息

  • 1. 广西大学 计算机与电子信息学院,广西 南宁 530004
  • 折叠

摘要

Abstract

The quality of algorithms has directly impacted on the final classification results in multi-class classification. In current algo-rithms for multi-classification,those which are based on Support Vector Machine ( SVM) have better comprehensive performance than others. But they also face some common problems,such as unclassifiable regions and low efficiency. For these problems,a modified bina-ry tree SVM multi-classification algorithm which is based on the effect of distance and distribution of classes to inter-class separability is proposed,using the strategy of the easiest class to separate for the first partition to establish the structure of the tree. Tests in different data sets show that this method can not only solve the unclassifiable regions,but also can improve the efficiency and accuracy of classification.

关键词

支持向量机/多分类/二叉树/超球体

Key words

support vector machine/multi-classification/binary tree/hypersphere

分类

信息技术与安全科学

引用本文复制引用

李燕玲,苏一丹..改进的二叉树支持向量机在多分类中的应用[J].计算机技术与发展,2014,(7):181-184,4.

基金项目

教育部人文社会科学研究项目(11YJAZH080) (11YJAZH080)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文