| 注册
首页|期刊导航|计算机技术与发展|一种改进的K-Means算法

一种改进的K-Means算法

尹成祥 张宏军 张睿 綦秀利 王彬

计算机技术与发展Issue(10):30-33,4.
计算机技术与发展Issue(10):30-33,4.DOI:10.3969/j.issn.1673-629X.2014.10.007

一种改进的K-Means算法

An Improved K-Means Clustering Algorithm

尹成祥 1张宏军 1张睿 1綦秀利 1王彬1

作者信息

  • 1. 解放军理工大学,江苏 南京 210007
  • 折叠

摘要

Abstract

Aiming at the problemsof too much iterative times in selecting initial centroids stochastically for K-Means algorithm,a method is proposed to optimize the initial centroids through cutting the set into k segmentations and select one point in each segmentation as initial centroids for iterative computing. A new valid function called clustering-index is defined as the sum of clustering-density and clustering-significance and can be used to search the optimization of k in the internal of [1, n ]. The simulation experiment with IRIS data set shows that the proposed algorithm converges faster and the value k found is close to the actual value,which proves the validity of the al-gorithm.

关键词

K-Means算法/分段/聚类指数/紧密度/显著度

Key words

K-Means algorithm/segmentation/clustering-index/density/significance

分类

信息技术与安全科学

引用本文复制引用

尹成祥,张宏军,张睿,綦秀利,王彬..一种改进的K-Means算法[J].计算机技术与发展,2014,(10):30-33,4.

基金项目

国家自然科学基金资助项目(70971137) (70971137)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文