| 注册
首页|期刊导航|计算机技术与发展|基于矩阵分解的协同过滤算法的并行化研究

基于矩阵分解的协同过滤算法的并行化研究

王全民 苗雨 何明 郑爽

计算机技术与发展Issue(2):55-59,5.
计算机技术与发展Issue(2):55-59,5.DOI:10.3969/j.issn.1673-629X.2015.02.013

基于矩阵分解的协同过滤算法的并行化研究

Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization

王全民 1苗雨 1何明 1郑爽1

作者信息

  • 1. 北京工业大学 计算机学院,北京 100124
  • 折叠

摘要

Abstract

Collaborative filtering algorithm based on matrix factorization is a collaborative filtering recommendation technique proposed in recent years. In the process of recommendation each prediction depends on the collaboration of the whole known rating set and the feature matrices need huge storage. So the recommendation with only one node will meet the bottleneck of time and resource. Through in-depth study on the principle and feature of current parallel implementation of a collaborative filtering algorithm based on ALS ( Alternating-Least-Squares) ,get the reason why the computing efficiency of the implementation of traditional iterative algorithm on Hadoop is very low. According to the idea of iterative MapReduce,some methods such as loop-aware scheduling algorithm,static data caching,job loop controlling,fixed point detecting are proposed. The experiment on Netflix data set shows that the iterative MapReduce has improved the parallel computing efficiency of collaborative filtering algorithm based on ALS.

关键词

ALS算法/协同过滤/Hadoop/迭代式MapReduce

Key words

alternating least squares/collaborative filtering/Hadoop/iterative MapReduce

分类

信息技术与安全科学

引用本文复制引用

王全民,苗雨,何明,郑爽..基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,(2):55-59,5.

基金项目

国家自然科学基金资助项目(61272500) (61272500)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文