| 注册
首页|期刊导航|智能系统学报|改进教与学优化算法的 LQR 控制器优化设计

改进教与学优化算法的 LQR 控制器优化设计

拓守恒 邓方安 雍龙泉

智能系统学报Issue(5):602-607,6.
智能系统学报Issue(5):602-607,6.DOI:10.3969/j.issn.1673-4785.201304071

改进教与学优化算法的 LQR 控制器优化设计

Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm

拓守恒 1邓方安 1雍龙泉1

作者信息

  • 1. 陕西理工学院数学与计算机科学学院,陕西西安723000
  • 折叠

摘要

Abstract

To determine the weighting matrix Q and R for a linear quadratic regulator ( LQR) , a modified teaching-learning-based optimization ( MTLBO) algorithm is proposed to tune weighting factors for active suspension LQR controller.The “Teaching” phase and“learning” phase are modified using MTLBO based on the basic TLBO algo-rithm.A novel“self-learning” strategy is employed in MTLBO.The simulation results showed that the MTLBO algo-rithm has distinct advantages in convergence, precision and stability than basic TLBO, PSO and genetic algorithms.

关键词

教与学优化算法/LQR控制器/优化控制/主动悬架/粒子群优化算法/遗传算法

Key words

teaching-learning-based optimization algorithm/LQR controller/optimal control/active suspension/particle swarm optimization/genetic algorithm

分类

信息技术与安全科学

引用本文复制引用

拓守恒,邓方安,雍龙泉..改进教与学优化算法的 LQR 控制器优化设计[J].智能系统学报,2014,(5):602-607,6.

基金项目

国家自然科学基金资助项目(11401357);陕西省教育厅基金资助项目(14JK1141);汉中市科技局基金资助项目(2013hzzx-39). ()

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文