| 注册
首页|期刊导航|运筹与管理|对模糊数互补判断矩阵乘性一致性的重新认识

对模糊数互补判断矩阵乘性一致性的重新认识

石喜军 张强 朱吉乔

运筹与管理Issue(3):1-5,5.
运筹与管理Issue(3):1-5,5.

对模糊数互补判断矩阵乘性一致性的重新认识

New Cognition to Multiplicative Consistency of Fuzzy Reciprocal Judgment Matrix

石喜军 1张强 1朱吉乔2

作者信息

  • 1. 北京理工大学 管理与经济学院,北京 100081
  • 2. 北京建筑材料科学研究总院,北京 100041
  • 折叠

摘要

Abstract

To solve the problem that the relationship between addition and subtraction and that between multipli-cation and division in fuzzy numbers is no longer the inverse operation and make the operational laws more corre-spond to reality, this paper studies the multiplicative consistency of fuzzy reciprocal judgment matrix by introdu-cing the concepts of independent variable, dependent variable, representative system and degree of freedom in classical mathematics.Then, the result reveals that it is unreasonable that if a fuzzy reciprocal judgment matrix satisfies the conditions of multiplicative consistency defined in some existing related literatures, then this matrix must be a precise reciprocal judgment matrix.Finally, based on the fuzzy cut set theory, using the relationships among elements of fuzzy reciprocal judgment matrix, the multiplicative consistency of fuzzy reciprocal judgment matrix is redefined.

关键词

管理科学与工程/代表系统/模糊集理论/模糊数互补判断矩阵/自变模糊数/因变模糊数

Key words

management science and engineering/representative system/fuzzy theory/fuzzy number comple-ment judgment matrix/independent fuzzy number/dependent fuzzy number

分类

管理科学

引用本文复制引用

石喜军,张强,朱吉乔..对模糊数互补判断矩阵乘性一致性的重新认识[J].运筹与管理,2015,(3):1-5,5.

基金项目

国家自然科学基金和高等学校博士学科点专项科研基金资助 ()

运筹与管理

OA北大核心CHSSCDCSCDCSSCICSTPCD

1007-3221

访问量0
|
下载量0
段落导航相关论文