| 注册
首页|期刊导航|原子能科学技术|遗传神经网络对水平通道流动沸腾传热系数的预测

遗传神经网络对水平通道流动沸腾传热系数的预测

章静 丛腾龙 苏光辉 秋穗正

原子能科学技术Issue(1):70-76,7.
原子能科学技术Issue(1):70-76,7.DOI:10.7538/yzk.2015.49.01.0070

遗传神经网络对水平通道流动沸腾传热系数的预测

Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channel by Genetic Neural Network

章静 1丛腾龙 2苏光辉 1秋穗正2

作者信息

  • 1. 西安交通大学动力工程多相流国家重点实验室,陕西西安 710049
  • 2. 西安交通大学核科学与技术学院,陕西西安 710049
  • 折叠

摘要

Abstract

The three‐layer back propagation network (BPN) and genetic neural network (GNN) were developed to predict the flow boiling heat transfer coefficient (HTC) in conventional and micro channels . The precision of GNN is higher than that of BPN (with root mean square errors of 17.16% and 20.50% , respectively ) . The inputs include vapor quality ,mass flux ,heat flux ,diameter and physical properties and the output is HTC .Based on the trained GNN ,the influences of input parameters on HTC were analyzed .HTC increases with pressure in conventional channels .The pressure has a negligible effect at low pressure region on HTC for micro channels .However ,at high pressure region ,HTC increases in low vapor quality region ,while decreases in the high vapor quality region with the increase of pressure . HTC increases with the mass flux and heat flux ,and HTC initially increases and then decreases as vapor quality increases . HTC increases inversely with the decrease of diameter .Dry‐out arises at a lower quality in micro channels than that in conventional channels and more easily occurs in a smaller channel .

关键词

BP神经网络/遗传神经网络/流动沸腾传热系数

Key words

back propagation network/genetic neural network/flow boiling heat trans-fer coefficient

分类

能源科技

引用本文复制引用

章静,丛腾龙,苏光辉,秋穗正..遗传神经网络对水平通道流动沸腾传热系数的预测[J].原子能科学技术,2015,(1):70-76,7.

基金项目

国家杰出青年科学基金资助项目 ()

原子能科学技术

OA北大核心CSCDCSTPCD

1000-6931

访问量0
|
下载量0
段落导航相关论文