| 注册
首页|期刊导航|中国电机工程学报|基于Bloch球面的量子遗传算法的混合储能系统容量配置

基于Bloch球面的量子遗传算法的混合储能系统容量配置

马速良 马会萌 蒋小平 段国栋 李娜

中国电机工程学报Issue(3):592-599,8.
中国电机工程学报Issue(3):592-599,8.DOI:10.13334/j.0258-8013.pcsee.2015.03.011

基于Bloch球面的量子遗传算法的混合储能系统容量配置

Capacity Configuration of the Hybrid Energy Storage System Based on Bloch Spherical Quantum Genetic Algorithm

马速良 1马会萌 2蒋小平 1段国栋 1李娜1

作者信息

  • 1. 中国矿业大学 北京 机电与信息工程学院,北京市 海淀区 100083
  • 2. 中国电力科学研究院,北京市 海淀区 100192
  • 折叠

摘要

Abstract

It can not be ignored that active power fluctuations in wind power's influence on the grid. The hybrid energy storage system access to the place in which wind power connected to the power grid can effectively reduce the impact of the intermittency of wind power. Firstly, the fluctuating power of wind power was separated to derive the output power of the hybrid energy storage system Secondly, charging and discharging of the super-capacitor were firstly controlled in the allowable range of the power rating, the states of charge and the durations of charging or discharging of the hybrid energy storage. At last, the Bloch spherical quantum genetic algorithm was applied to decide the combination scheme of hybrid energy storage system to meet the technical requirements of hybrid energy storage system and engineering indicators and make the cost be the lowest. In the example, the validity of the control model based on priority control of super-capacitor charging and discharging and the effectiveness of configuring hybrid energy storage system capacity with the Bloch spherical quantum genetic algorithm was proved.

关键词

风电有功功率波动/混合储能/容量配置/协调控制策略/Bloch球面/量子遗传算法

Key words

wind active power variation/capacity configuration/hybrid energy storage systems (HESS)/coordinated control strategy/Bloch spherical/quantum genetic algorithm (QGA)

分类

信息技术与安全科学

引用本文复制引用

马速良,马会萌,蒋小平,段国栋,李娜..基于Bloch球面的量子遗传算法的混合储能系统容量配置[J].中国电机工程学报,2015,(3):592-599,8.

基金项目

国家863高技术基金项目(2011AA05A113);国家自然科学基金项目(51277157)。@@@@The National HighTechnology Research and Development of China 863 Program (2011AA05A113) (2011AA05A113)

Project Supported by National Natural Science Foundation of China (51277157) (51277157)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文