| 注册
首页|期刊导航|中国机械工程|多重分形去趋势波动分析在滚动轴承损伤程度识别中的应用

多重分形去趋势波动分析在滚动轴承损伤程度识别中的应用

林近山 陈前

中国机械工程Issue(13):1760-1765,6.
中国机械工程Issue(13):1760-1765,6.DOI:10.3969/j.issn.1004-132X.2014.13.012

多重分形去趋势波动分析在滚动轴承损伤程度识别中的应用

Application of Multifractal Detrended Fluctuation Analysis to Severity Identification of Rolling Bearing Damages

林近山 1陈前2

作者信息

  • 1. 南京航空航天大学机械结构力学及控制国家重点实验室,南京,210016
  • 2. 潍坊学院,潍坊,261061
  • 折叠

摘要

Abstract

The multifractal spectrum of bearing vibration data was estimated using MFDFA.As a result,the shapes and positions of the multifractal spectrum could be largely determined by the left-end,right-end and extreme points of the multifractal spectrum.Subsequently,coordinates of these characteristic points were used as characteristic parameters for describing dynamic properties of the bearings.MFDFA,together with four conventional temporal statistical parameters,wavelet transform (WT)and empirical mode decomposition(EMD),was exploited to recognize severity of damage of bearing balls and outer-races separately.Each of the Mahalanobis-distance(MD),BP neural network and support vector machine (SVM)algorithms was employed to classify the feature parameters de-rived from each of WT,EMD and MFDFA.Moreover,the effectiveness of these algorithms in severi-ty identification of bearing damage was compared.The results show that the methods associating MD with MFDFA and associating SVM with WT or EMD perform better than the others.The conclusions drawn in the early work seem to be further confirmed.

关键词

多重分形去趋势波动分析/滚动轴承/损伤/程度识别

Key words

multifractal detrended fluctuation analysis(MFDFA)/rolling bearing/damage/sever-ity identification

分类

机械制造

引用本文复制引用

林近山,陈前..多重分形去趋势波动分析在滚动轴承损伤程度识别中的应用[J].中国机械工程,2014,(13):1760-1765,6.

基金项目

山东省自然科学基金资助项目(ZR2012EEL07) (ZR2012EEL07)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文