| 注册
首页|期刊导航|中国机械工程|刀具磨损早期故障智能诊断研究

刀具磨损早期故障智能诊断研究

曹伟青 傅攀 李晓晖

中国机械工程Issue(18):2473-2477,5.
中国机械工程Issue(18):2473-2477,5.DOI:10.3969/j.issn.1004-132X.2014.18.011

刀具磨损早期故障智能诊断研究

Early Fault Intelligent Diagnosis of Tool Wear

曹伟青 1傅攀 1李晓晖1

作者信息

  • 1. 西南交通大学,成都,610031
  • 折叠

摘要

Abstract

In view of the difficulties of fault feature extraction from strong background noise in tool wear early fault diagnosis ,a method was proposed based on twice sampling SR and B-spline neural net-work .First ,SR was employed to remove noise in tool wear vibration signals because of its benefits for enhancing the signal-to-noise ratio ,then ,tool wears with the good fault features were identified by B-spline neural network .In order to improve the deficiency of a single parameter be optimized in the tra-ditional SR and achieve the best SR parameters ,an adaptive SR was proposed based on genetic algo-rithm ,which realized multi-parameter synchronous optimization .The experimental results show that this method can realize the weak signal detection and apply to tool fault diagnosis effectively .

关键词

随机共振/遗传算法/信噪比/B样条神经网络

Key words

stochastic resonance(SR)/genetic algorithm/signal-to-noise ratio/B-spline neural net-work

分类

信息技术与安全科学

引用本文复制引用

曹伟青,傅攀,李晓晖..刀具磨损早期故障智能诊断研究[J].中国机械工程,2014,(18):2473-2477,5.

基金项目

中央高校基本科研业务费专项资金资助项目 ()

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文