| 注册
首页|期刊导航|中国机械工程|LS-SVM 回归算法在刀具磨损量预测中的应用

LS-SVM 回归算法在刀具磨损量预测中的应用

关山 闫丽红 彭昶

中国机械工程Issue(2):217-222,6.
中国机械工程Issue(2):217-222,6.DOI:10.3969/j.issn.1004132X.2015.02.016

LS-SVM 回归算法在刀具磨损量预测中的应用

Application of Regression Algorithm of LS-SVM in Tool Wear Prediction

关山 1闫丽红 2彭昶1

作者信息

  • 1. 东北电力大学,吉林,132012
  • 2. 吉林石化工程设计有限公司,吉林,132013
  • 折叠

摘要

Abstract

Aiming at online predicting tool wear accurately,a method based on the regression algo-rithm of LS-SVM was proposed.First the acoustic emission signals were decomposed into several in-trinsic mode functions(IMF)employing empirical mode decomposition.Then,an AR model of each IMF was established respectively.AR model coefficients were extracted to construct feature vector.Fi-nally,the feature vectors were feed into LS-SVM and prediction of tool wear was realized.The experi-mental results show that it can predict the amount of tool wear after 10s according to the current cut-ting conditions and the proposed method has better accuracy compared with neural network algo-rithm.

关键词

刀具磨损量预测/最小二乘支持向量机/经验模态分解/自回归模型

Key words

tool wear prediction/lease square support vector machine(LS-SVM)/empirical mode decomposition(EMD)/auto regressive(AR)model

分类

机械制造

引用本文复制引用

关山,闫丽红,彭昶..LS-SVM 回归算法在刀具磨损量预测中的应用[J].中国机械工程,2015,(2):217-222,6.

基金项目

东北电力大学博士科研启动基金资助项目(BSJXM-201115) (BSJXM-201115)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量4
|
下载量0
段落导航相关论文