| 注册
首页|期刊导航|中国机械工程|基于扩展卡尔曼粒子滤波算法的锂电池 SOC 估计

基于扩展卡尔曼粒子滤波算法的锂电池 SOC 估计

赵又群 周晓凤 刘英杰

中国机械工程Issue(3):394-397,4.
中国机械工程Issue(3):394-397,4.DOI:10.3969/j.issn.1004132X.2015.03.019

基于扩展卡尔曼粒子滤波算法的锂电池 SOC 估计

SOC Estimation for Li-Ion Battery Based on Extended Kalman Particle Filter

赵又群 1周晓凤 1刘英杰1

作者信息

  • 1. 南京航空航天大学,南京,210016
  • 折叠

摘要

Abstract

scribed the residual capacity,and indicated the remainder driving range of electric vehicles.The cycles, As the key parameter for power battery management,the SOC of Li-ion battery de-instantaneous high current,abnormal temperatures and other factors would change cell characteristics, which might introduce larger errors even divergence over time if the extended Kalman filter algorithm were applied to the SOC estimation.To suppress the divergence and noise,this paper proposed a meth-od based on EKPF algorithm to realize accurate SOC and the current drift estimation on the Li-ion battery mixed noise model.Finally,the superiority of this method was validated by simulation results.

关键词

锂电池/荷电状态/混合噪声模型/扩展卡尔曼粒子滤波

Key words

L-i ion battery/state-of-charge(SOC)/mixed noise model/extended Kalman particle fil- ter(EKPF)

分类

交通工程

引用本文复制引用

赵又群,周晓凤,刘英杰..基于扩展卡尔曼粒子滤波算法的锂电池 SOC 估计[J].中国机械工程,2015,(3):394-397,4.

基金项目

国家高技术研究发展计划(863计划)资助项目(2011AA11A210,2011AA11A220) (863计划)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文