| 注册
首页|期刊导航|浙江电力|基于卡尔曼滤波的短期负荷多步预测修正模型研究

基于卡尔曼滤波的短期负荷多步预测修正模型研究

翟玮星

浙江电力Issue(7):20-23,4.
浙江电力Issue(7):20-23,4.

基于卡尔曼滤波的短期负荷多步预测修正模型研究

Study on Modified Model for Multi-step Forecasting of Short-term load Based on Kalman Filter

翟玮星1

作者信息

  • 1. 国网浙江省电力公司宁波供电公司,浙江 宁波 315800
  • 折叠

摘要

Abstract

This paper proposes a modified method for multi-step forecasting of short-term load. Firstly, the BP neural network method is adopted to establish time-sharing and multi-step forecasting model of short-term load; then Kalman filter model is utilized to modify each initial forecast value to reduce the cumulative error of the model and improve multi-step forecasting. The calculation example result demonstrates that the pro-posed method can not only improve forecasting of single-step forecasting but effectively reduce multi-step forecasting errors;it is of operation significance for consecutive daily short-term load forecasting.

关键词

卡尔曼滤波/短期负荷/多步预测/累积误差/BP神经网络

Key words

Kalman filter/short-term load/multi-step forecasting/cumulative error/BP neural network

分类

信息技术与安全科学

引用本文复制引用

翟玮星..基于卡尔曼滤波的短期负荷多步预测修正模型研究[J].浙江电力,2014,(7):20-23,4.

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文