| 注册
首页|期刊导航|中南民族大学学报(自然科学版)|非监督特征学习方法在脑电身份识别中的应用

非监督特征学习方法在脑电身份识别中的应用

官金安 高炜 周到 高军峰

中南民族大学学报(自然科学版)Issue(4):85-89,93,6.
中南民族大学学报(自然科学版)Issue(4):85-89,93,6.

非监督特征学习方法在脑电身份识别中的应用

Unsupervised Feature Learning Method with Application to EEG signal based Personal Identification

官金安 1高炜 2周到 1高军峰2

作者信息

  • 1. 中南民族大学生物医学工程学院,武汉430074
  • 2. 中南民族大学认知科学国家民委重点实验室,武汉430074
  • 折叠

摘要

Abstract

The multi-ganglion BP neural network based feature learning method, a kind of unsupervised methods, is applied to the feature extraction procedure of Imitating-Reading EEG based personal identification system.Five subjects participated in the Imitating-Reading ERP experiments.The dataset of each subject contains 400 trials of eight channel ( PO3, O1, Oz, O2, PO4, P4, P8, CP6 ) EEG signals ranging from 100ms to 400ms after the subject receiving target stimuli.The multi-ganglion BP neural network, which consists of six relative small-scale auto-encoders, is applied to extract the feature vectors from single-trial EEG signals and two, five, ten-trial averaging EEG signals respectively.The classification procedure is performed by support vector machine and the classification accuracy of the subjects exceeds 90%, when using five-trial averaging samples, considerably higher than using single-channel temporal feature extraction method.This study provides an unsupervised feature learning method for the application of EEG based personal identification system.

关键词

模拟阅读/脑电信号特征提取/非监督特征学习/身份识别

Key words

imitating-reading ERP/EEG feature extraction/unsupervised feature learning method/personal identification

分类

信息技术与安全科学

引用本文复制引用

官金安,高炜,周到,高军峰..非监督特征学习方法在脑电身份识别中的应用[J].中南民族大学学报(自然科学版),2014,(4):85-89,93,6.

基金项目

国家自然科学基金资助项目(91120017);国家自然科学基金资助项目(81271659);中央高校基本科研业务费资助项目 ()

中南民族大学学报(自然科学版)

OA北大核心CSTPCD

1672-4321

访问量0
|
下载量0
段落导航相关论文