| 注册
首页|期刊导航|中山大学学报(自然科学版)|基于非线性动态系统辨识的 D-FNN算法研究

基于非线性动态系统辨识的 D-FNN算法研究

杨文茵 张德丰 王传胜

中山大学学报(自然科学版)Issue(5):20-24,5.
中山大学学报(自然科学版)Issue(5):20-24,5.

基于非线性动态系统辨识的 D-FNN算法研究

Research Based on D-FNN Algorithm on the Nonlinear Dynamic System Identification

杨文茵 1张德丰 1王传胜2

作者信息

  • 1. 佛山科学技术学院计算机系,广东 佛山528000
  • 2. 暨南大学计算机科学系,广东 广州510000
  • 折叠

摘要

Abstract

Dynamic Fuzzy Neural Network (D-FNN),which basic idea is to construct a RBF neural net-work based on extension,could be seen as a TSK fuzzy system,as well as a Gaussian RBF neural net-work based on normalized.Within D-FNN algorithms,not only parameters could be adjusted in the learn-ing process,but also the structure of fuzzy neural network could be automatically determined.Nonlinear parameters are directly decided by the training samples and Gaussian width,which only need one step training to achieve this goal.Due to the application of pruning strategies,network structure would not continue to grow,thus ensuring the generalization capability of the system.Simulations are performed on nonlinear dynamic system identification by using D-FNN,and the effectiveness and efficiency of D-FNN algorithm are proved by comparison with related algorithms.

关键词

动态模糊神经网络/模糊规则/系统辨识/RBF

Key words

D-FNN/fuzzy rule/system identification/Radial Basis Function

分类

计算机与自动化

引用本文复制引用

杨文茵,张德丰,王传胜..基于非线性动态系统辨识的 D-FNN算法研究[J].中山大学学报(自然科学版),2014,(5):20-24,5.

基金项目

广东省自然科学基金资助项目 ()

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文