| 注册
首页|期刊导航|中山大学学报(自然科学版)|基于小波高频奇异值分解的无参考模糊图像质量评价

基于小波高频奇异值分解的无参考模糊图像质量评价

黄晓生 严浩 曹义亲 李亚琴

中山大学学报(自然科学版)Issue(6):165-170,6.
中山大学学报(自然科学版)Issue(6):165-170,6.

基于小波高频奇异值分解的无参考模糊图像质量评价

A No-reference Blur Image Quality Assessment Algorithm Based on Wavelet High Frequency Singular Value Decomposition

黄晓生 1严浩 1曹义亲 2李亚琴1

作者信息

  • 1. 华东交通大学信息工程学院 江西 南昌330013
  • 2. 华东交通大学软件学院,江西 南昌330013
  • 折叠

摘要

Abstract

Traditional no reference blur image quality assessment methods usually need a pre-training and learning or a reference image constructing procedure,this result in the algorithm with high computa-tion cost.Aiming to this,a simple and effective no reference blur image quality assessment algorithm is proposed based on wavelet high frequency coefficients singular value decomposition.The method is build on the observations that the different wavelet high frequency sub-bands in the same scale of an image are highly structural correlation,and the degree of correlation would be reduced as the blur distortion deepe-ning.According to this,the new method first makes wavelet transform to the image,then makes singular value decomposition to the high frequency sub-bands to get their structure information.Finally,the an-gles,which represents the similarity,between different high frequency sub-bands’structural vectors are calculated and the sum of angles is used as the last objective assessment index.Experiments results show its good effectiveness and performance on LIVE2,CSIQ and TID2013databases and compared to the tra-ditional no-reference methods,the proposed algorithm is more efficient and practical as it does not need to train or create a reference image.

关键词

无参考图像质量评价/小波变换/模糊图像/奇异值分解

Key words

no-reference image quality assessment/wavelet transform/blur Image/singular value de-composition

分类

信息技术与安全科学

引用本文复制引用

黄晓生,严浩,曹义亲,李亚琴..基于小波高频奇异值分解的无参考模糊图像质量评价[J].中山大学学报(自然科学版),2014,(6):165-170,6.

基金项目

国家自然科学基金资助项目(61365008);江西省自然科学基金资助项目 ()

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文