| 注册
首页|期刊导航|中山大学学报(自然科学版)|一种基于加权残值法的高阶辛算法

一种基于加权残值法的高阶辛算法

陆克浪 富明慧 李纬华 李任飞

中山大学学报(自然科学版)Issue(4):8-12,22,6.
中山大学学报(自然科学版)Issue(4):8-12,22,6.DOI:10.13471/j.cnki.acta.snus.2015.04.002

一种基于加权残值法的高阶辛算法

A High Order Symplectic Algorithm Based on Weighted Residual Method

陆克浪 1富明慧 1李纬华 2李任飞1

作者信息

  • 1. 中山大学工学院,广东 广州 510275
  • 2. 广东技术师范学院机电学院,广东 广州 510635
  • 折叠

摘要

Abstract

A new way to construct high order symplectic algorithms is proposed based on weighted residu-al method.Firstly,in the time subdomain,the corresponding integral equation of Galerkin method for Hamilton dual equation based on the idea of weighted residual method is proposed,then the generalized displacement and momentum are approximated by the same Lagrange interpolation within the time subdo-main,which are substituted into the corresponding integral equation.By numerical integration,the origi-nal initial value problem of dynamics is expressed as algebraic equations with displacement and momen-tum at the interpolation points as unknown variables.For nonlinear dynamic systems,a simple scheme of choosing initial values,which can significantly improve the computational efficiency for Newton-Raphson method,is presented.Finally,the symplecticity and performance of the proposed algorithms are dis-cussed in detail.Compared with the same order symplectic Runge-Kutta methods,the accuracy of the two methods are almost the same,but the proposed algorithms are much simpler and less computational ex-pense.The numerical results illustrate that the proposed algorithms show good performance in accuracy and efficiency.

关键词

哈密顿系统/加权残值法/非线性动力学/伽辽金法/辛算法

Key words

Hamilton system/weighted residual method/nonlinear dynamics/Galerkin method/sym-plectic algorithm

分类

数理科学

引用本文复制引用

陆克浪,富明慧,李纬华,李任飞..一种基于加权残值法的高阶辛算法[J].中山大学学报(自然科学版),2015,(4):8-12,22,6.

基金项目

国家自然科学基金资助项目(11172334);国家自然科学基金青年科学基金资助项目(11202247);中央高校基本科研业务费专项资金资助项目 ()

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文