| 注册
首页|期刊导航|噪声与振动控制|基于小波包和BP神经网络的风机齿轮箱故障诊断

基于小波包和BP神经网络的风机齿轮箱故障诊断

王皓 周峰

噪声与振动控制Issue(2):154-159,6.
噪声与振动控制Issue(2):154-159,6.DOI:10.3969/j.issn.1006-1335.2015.02.035

基于小波包和BP神经网络的风机齿轮箱故障诊断

Fault Diagnosis of Wind Turbine Gearbox Based on Wavelet Packet and Back Propagation Neural Network

王皓 1周峰1

作者信息

  • 1. 燕山大学 河北省测试计量技术及仪器重点实验室,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

Gearbox is the core component of wind turbine, but it can be faulted easily. In order to monitor the gearbox, a fault diagnosis method based on wavelet packet transform and Back Propagation (BP) neural network was put forward. Firstly, the vibration signals of the gearbox were denoised, decomposed and reconstructed according to their characteristics using wavelet packet transform. Then, the fault features of the different frequency band energy were effectively extracted. Fi-nally, the fault energy features extracted were put into BP neural network diagnosis system to recognize the fault types. The system can implement intelligent fault diagnosis. The experiment demonstrated the efficiency of this method.

关键词

振动与波/风机齿轮箱/小波包变换/BP神经网络/故障诊断

Key words

vibration and wave/wind turbine gearbox/wavelet packet transform/BP neural network/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

王皓,周峰..基于小波包和BP神经网络的风机齿轮箱故障诊断[J].噪声与振动控制,2015,(2):154-159,6.

基金项目

国家自然科学基金 ()

噪声与振动控制

OACSCDCSTPCD

1006-1355

访问量3
|
下载量0
段落导航相关论文