福州大学学报(自然科学版)Issue(4):435-439,5.DOI:10.7631/issn.1000-2243.2015.04.0435
一类二维分数阶偏微分方程解的适定性
Well-posedness of the 2 D-fractional partial differential equations
摘要
Abstract
We investigate the boundary value problem of two-dimensional fractional partial differenti-al equations ( FEPDEs) .The main contributions of this work are twofold:first, we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the frac-tional operator.Then, we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions.Consequently, this work provides the theory for constructing numeri-cal method such as finite element method and spectral method for solving the fractional partial differen-tial equations.关键词
分数阶导数/弱解/变分形式/适定性Key words
fractional derivative/weak solution/variation formulation/well-posedness分类
数理科学引用本文复制引用
苏延辉..一类二维分数阶偏微分方程解的适定性[J].福州大学学报(自然科学版),2015,(4):435-439,5.基金项目
国家自然科学基金资助项目(11226081);福建省自然科学基金资助项目 ()