| 注册
首页|期刊导航|福州大学学报(自然科学版)|一类二维分数阶偏微分方程解的适定性

一类二维分数阶偏微分方程解的适定性

苏延辉

福州大学学报(自然科学版)Issue(4):435-439,5.
福州大学学报(自然科学版)Issue(4):435-439,5.DOI:10.7631/issn.1000-2243.2015.04.0435

一类二维分数阶偏微分方程解的适定性

Well-posedness of the 2 D-fractional partial differential equations

苏延辉1

作者信息

  • 1. 福州大学数学与计算机科学学院,福建福州 350116
  • 折叠

摘要

Abstract

We investigate the boundary value problem of two-dimensional fractional partial differenti-al equations ( FEPDEs) .The main contributions of this work are twofold:first, we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the frac-tional operator.Then, we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions.Consequently, this work provides the theory for constructing numeri-cal method such as finite element method and spectral method for solving the fractional partial differen-tial equations.

关键词

分数阶导数/弱解/变分形式/适定性

Key words

fractional derivative/weak solution/variation formulation/well-posedness

分类

数理科学

引用本文复制引用

苏延辉..一类二维分数阶偏微分方程解的适定性[J].福州大学学报(自然科学版),2015,(4):435-439,5.

基金项目

国家自然科学基金资助项目(11226081);福建省自然科学基金资助项目 ()

福州大学学报(自然科学版)

OA北大核心CSTPCD

1000-2243

访问量0
|
下载量0
段落导航相关论文