| 注册
首页|期刊导航|电子学报|一种多策略融合的多目标粒子群优化算法

一种多策略融合的多目标粒子群优化算法

谢承旺 邹秀芬 夏学文 王志杰

电子学报Issue(8):1538-1544,7.
电子学报Issue(8):1538-1544,7.DOI:10.3969/j.issn.0372-2112.2015.08.011

一种多策略融合的多目标粒子群优化算法

A MuIti-Objective ParticIe Swarm Optimization AIgorithm Integrating MuItipIy Strategies

谢承旺 1邹秀芬 2夏学文 1王志杰3

作者信息

  • 1. 武汉大学数学与统计学院,湖北武汉 430072
  • 2. 华东交通大学软件学院,江西南昌 330013
  • 3. 华东交通大学软件学院,江西南昌 330013
  • 折叠

摘要

Abstract

In order to improve the overall performance of multi-objective particle swarm optimization algorithm (MOPSO) in solving complicated multi-objective optimization problems,a multi-objective particle swarm optimization algorithm integrating multiply strategies (MSMOPSO)was proposed in the paper.A new initialization approach of combining uniformization and random-ization was adopted in the MSMOPSO.Secondly,a disturbance item was added to the particle’s velocity updating formula.Thirdly, a simplified k-nearest neighbor approach was applied to preserve the diversity of external archive.Finally,every non-dominated par-ticle in the external archive was assigned the property of lifespan and the lifespan value would be adjusted dynamically during the run of the MSMOPSO.The experimental results illustrate that the proposed algorithm significantly outperforms the other five peer competitors in terms of GD,SP on ZDT and DTLZ test instances set.

关键词

粒子群优化/多策略融合/多目标优化问题/多目标粒子群优化算法

Key words

particle swarm optimization/integrating multiply strategies/multi-objective optimization problem/multi-objective particle swarm optimization algorithm

分类

信息技术与安全科学

引用本文复制引用

谢承旺,邹秀芬,夏学文,王志杰..一种多策略融合的多目标粒子群优化算法[J].电子学报,2015,(8):1538-1544,7.

基金项目

国家自然科学基金(No.61165004);国家自然科学基金重大研究计划培育项目(No.91230118);江西省自然科学基金(No.20114BAB201025);江西省教育厅科技项目 ()

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文