| 注册
首页|期刊导航|计算机应用与软件|基于熵降噪优化相似性距离的KNN算法研究

基于熵降噪优化相似性距离的KNN算法研究

刘晋胜

计算机应用与软件Issue(9):254-256,285,4.
计算机应用与软件Issue(9):254-256,285,4.DOI:10.3969/j.issn.1000-386x.2015.09.061

基于熵降噪优化相似性距离的KNN算法研究

ON KNN ALGORITHM BASED ON OPTIMISING SIMILARITY DISTANCE WITH ENTROPY NOISE REDUCTION

刘晋胜1

作者信息

  • 1. 广东石油化工学院计算机与电子信息学院 广东 茂名525000
  • 折叠

摘要

Abstract

The main purpose of the research in this paper is to find an approach of similarity distance metric with high precision and high efficiency around the KNN algorithm.In this paper,according to the class features of characteristic parameter entropy transform indicator we proposed a similarity distance metric algorithm for reducing the noise of characteristic parameters class,which uses entropy characteristic transform indicator to design the amount of mutual class difference.For noise reduction optimisation of entropy,entropy correlation difference, class credibility calculation,traditional Euclidean distance and several KNN algorithms with same characteristic parameters,the theoretical analysis,simulation experiments on dataset of Letter and Pima Indians Diabetes,as well as KDD CUP’99 practical application of this similarity distance metric all show that the new algorithm is quite effective in KNN.

关键词

K近邻分类/熵特征变换/降噪/相似性距离

Key words

K-nearest neighbour (KNN)/Entropy characteristic transform/Noise reduction/Similarity distance

分类

信息技术与安全科学

引用本文复制引用

刘晋胜..基于熵降噪优化相似性距离的KNN算法研究[J].计算机应用与软件,2015,(9):254-256,285,4.

基金项目

广东省教育部产学研结合项目(2011 A 090200088)。 ()

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文