| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于协同分割的高分辨率遥感图像变化检测

基于协同分割的高分辨率遥感图像变化检测

袁敏 肖鹏峰 冯学智 张学良 胡永月

南京大学学报(自然科学版)Issue(5):1039-1048,10.
南京大学学报(自然科学版)Issue(5):1039-1048,10.DOI:10.13232/j.cnki.jnju.2015.05.015

基于协同分割的高分辨率遥感图像变化检测

Change detection from high-resolution remotely sensed images based on cosegmentation

袁敏 1肖鹏峰 2冯学智 3张学良 1胡永月2

作者信息

  • 1. 江苏省地理信息技术重点实验室,南京大学,南京,210023
  • 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023
  • 3. 南京大学地理信息科学系,南京,210023
  • 折叠

摘要

Abstract

Due to the inconsistency of multi-temporal objects’boundaries for object-based change detection,this paper proposes a new change detection approach from multi-temporal high-resolution remotely sensed images based on the concept of cosegmentation in the filed of computer vision.First,multi-temporal remotely sensed images are co-processed to discover the change feature and a map of change intensity is obtained using the magnitude of spectral change between images.Then cosegmentation is performed under the guidance of the change intensity map, combined with each image features.Multi-temporal change objects with accurate boundaries and spatial correspondence are directly generated by energy function minimization finally.Experimental results obtained on multi-temporal aerial images show that multi-temporal change objects are preferably segmented and the change process can also be clearly acquired through establishing a correspondence between multi-temporal change objects. This novel method can provide a workable way for object-based change detection from high-resolution remotely sensed images.

关键词

高分辨率遥感图像/多时相图像/变化检测/协同分割/最小割/最大流

Key words

high-resolution remotely sensed images/multi-temporal images/change detection/cosegmentation/min-cut/max-flow

分类

信息技术与安全科学

引用本文复制引用

袁敏,肖鹏峰,冯学智,张学良,胡永月..基于协同分割的高分辨率遥感图像变化检测[J].南京大学学报(自然科学版),2015,(5):1039-1048,10.

基金项目

江苏高校“青蓝工程”(201423),浙江省科技计划(2014F50022) (201423)

南京大学学报(自然科学版)

OACSCDCSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文