| 注册
首页|期刊导航|郑州大学学报(理学版)|一类具有脉冲免疫的时滞SIRS传染病模型的全局分析

一类具有脉冲免疫的时滞SIRS传染病模型的全局分析

吴燕兰 黄文韬 吴岱芩

郑州大学学报(理学版)Issue(3):43-48,54,7.
郑州大学学报(理学版)Issue(3):43-48,54,7.DOI:10.3969/j.issn.1671-6841.2015.03.008

一类具有脉冲免疫的时滞SIRS传染病模型的全局分析

Global Analysis of a Delay SIRS Epidemic Disease Model with Pulse Vaccination

吴燕兰 1黄文韬 1吴岱芩2

作者信息

  • 1. 桂林电子科技大学 数学与计算科学学院 广西 桂林541004
  • 2. 贺州学院 数学系 广西 贺州542800
  • 折叠

摘要

Abstract

An SIRS epidemic disease model with pulse vaccination and integral delays was considered, and dynamics behaiors of the model under pulse vaccination were analyzed. By use of the discrete dynam-ical system determined by the stroboscopic map, an“infection-free” periodic solution was obtained and it iwas shown that the‘infection-free’ periodic solution was asymptotic stability. Then, it was proved that when some parameters of the model were in appropriate condictions, the ‘infection-free’ periodic sollu-tion was globally attractive. Futher, with the theory on delay functional and impulsive differential equa-tion, sufficient condiction with time delay for permanence of the system was given. At the same time, the condition of the global attractivity of the model was obtained.

关键词

脉冲免疫/周期解/持久性/积分时滞/全局吸引性

Key words

pulse vaccination/periodic solution/permanence/integral delays/global attractivity

分类

数理科学

引用本文复制引用

吴燕兰,黄文韬,吴岱芩..一类具有脉冲免疫的时滞SIRS传染病模型的全局分析[J].郑州大学学报(理学版),2015,(3):43-48,54,7.

基金项目

国家自然科学基金资助项目,编号11261013 ()

广西高校科研项目,编号KY2015ZD043 ()

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量1
|
下载量0
段落导航相关论文