| 注册
首页|期刊导航|物理学报|Voigt线形函数二阶导数研究

Voigt线形函数二阶导数研究

杨晨光 阚瑞峰 许振宇 张光乐 刘建国

物理学报Issue(22):1-6,6.
物理学报Issue(22):1-6,6.DOI:10.7498/aps.63.223301

Voigt线形函数二阶导数研究

Second derivative of Voigt function

杨晨光 1阚瑞峰 1许振宇 1张光乐 1刘建国1

作者信息

  • 1. 中国科学院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室,合肥 230031
  • 折叠

摘要

Abstract

In high-temperature high-pressure environment, the measurement precisions of tunable diode laser absorption spec-troscopy and other laser spectrum technologies are influenced by spectral overlap because of Doppler and Lorentz broadenings. One of the potential methods to improve precision is to use the second derivative spectral signal, which has less overlap. This paper deals with the second derivative of Voigt function. The integration of its second derivative from negative to positive infinity is proved to be zero. And the analytical results of its second derivative minimum and the maxima or minima of its even-order derivatives are obtained. It is also shown that there is the relationship between the ratio of second derivative maximum point location to zero point location and the ratio of Lorentz half-width to Doppler half-width. These results provide the basis for inversing precision information from second derivative spectral signal.

关键词

Voigt函数/二阶导数最小值/零点位置

Key words

Voigt function/minimum of second derivative/locations of zero points

引用本文复制引用

杨晨光,阚瑞峰,许振宇,张光乐,刘建国..Voigt线形函数二阶导数研究[J].物理学报,2014,(22):1-6,6.

基金项目

国家自然科学基金(批准号:61108034)、国家自然科学基金青年科学基金(批准号:61205151)和中国科学院战略性先导科技专项(批准号:XDA05040102)资助的课题.* Project supported by the National Natural Science Foundation of China (Grant No.61108034), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.61205151), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05040102) (批准号:61108034)

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量0
|
下载量0
段落导航相关论文