首页|期刊导航|物理学报|强阻尼广义sine-Gordon方程特征问题的变分迭代法∗

强阻尼广义sine-Gordon方程特征问题的变分迭代法∗OA北大核心CSCDCSTPCDSCI

The variational iteration metho d for characteristic problem of strong damping generalized sine-Gordon equation

中文摘要英文摘要

研究了在数学、力学中广泛出现的一类非线性强阻尼广义sine-Gordon扰动微分方程问题。首先,引入行波变换,求出退化方程的精确解。再构造一个泛函,创建了一个变分迭代算法,最后,求出原非线性强阻尼广义sine-Gordon扰动微分方程问题的近似行波解析解。用变分迭代法可得到的各次近似解,具有便于求解、精度高等特点。求得的近似解析解弥补了单纯用数值方法的模拟解的不足。

A class of nonlinear strong damping sine-Gordon disturbed evolution differential equation is studied which appears widely in mathematics and mechanics. Firstly, we introduce a traveling wave transformation, and obtain the exact solution of degenerate equation. Then a functional calculating method for variational iteration is constructed, thus an iterative expansion is found. Finally, the approximate traveling wave analytic solutions for the original st…查看全部>>

许永红;石兰芳;莫嘉琪

蚌埠学院数理系,蚌埠 233030南京信息工程大学数学与统计学院,南京 210044安徽师范大学数学系,芜湖 241003

行波强阻尼sine-Gordon方程

traveling wavestrong dampingsine-Gordon equation

《物理学报》 2015 (1)

强非线性振动系统近似解研究与精度分析

10201-10208,8

国家自然科学基金(批准号:11202106),中央高校基本科研业务费专项资金(批准号:.2232012D3-34),安徽高校省级自然科学研究项目(批准号:KJ2014A151)和江苏省自然科学基金(批准号:13KJB170016)资助的课题.* Project supported by the National Natural Science Foundation of China (Grant No.11202106), the Fundamental Research Funds for the Central Universities, China (Grant No.2232012D3-34), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant No. KJ2014A151) and the Natural Sciences Foundation from the Universities of Jiangsu Province, China (Grant No.13KJB170016).* Project supported by the National Natural Science Foundation of China (Grant No.11202106), the Fundamental Research Funds for the Central Universities, China (Grant No.2232012D3-34), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant No. KJ2014A151) and the Natural Sciences Foundation from the Universities of Jiangsu Province, China (Grant No.13KJB170016)

10.7498/aps.64.010201

评论

您当前未登录!去登录点击加载更多...