| 注册
首页|期刊导航|中国空间科学技术|基于人工神经网络的反射器型面精度预测

基于人工神经网络的反射器型面精度预测

周阳 张淑杰 张华振

中国空间科学技术Issue(6):51-56,64,7.
中国空间科学技术Issue(6):51-56,64,7.DOI:10.3780/j.issn.1000-758X.2014.06.007

基于人工神经网络的反射器型面精度预测

Reflector Antenna Precision Prediction Based on Neural Network

周阳 1张淑杰 1张华振2

作者信息

  • 1. 同济大学航空航天与力学学院,上海 200092
  • 2. 上海跃盛信息技术有限公司,上海 200240
  • 折叠

摘要

Abstract

The precision of reflector antenna on orbit is an important design specification, and the reasonable structure design can improve the reflector precision. By taking full advantages of the high strength, high modulus, low coefficient of thermal expansion of the composite material,and the surface precision of the antenna could be improved significantly. By using the artificial neural networks'highly nonlinear mapping capability,and based on the principle of the minimum RMS,the design parameters were optimized.The calculation results indicate that the computing time can be effectively saved. The results show that the optimization method is reasonable, and the structure design meets the design requirements. The design scheme and analytical methods provide a direction for the structure design of the reflector.

关键词

人工神经网络/格栅反射器/型面精度/优化设计/天线/卫星通信

Key words

Artificial neural network/Grating reflector/Surface accuracy/Optimization design/Antenna/Satellite communications

引用本文复制引用

周阳,张淑杰,张华振..基于人工神经网络的反射器型面精度预测[J].中国空间科学技术,2014,(6):51-56,64,7.

中国空间科学技术

OA北大核心CSCDCSTPCD

1000-758X

访问量0
|
下载量0
段落导航相关论文