| 注册
首页|期刊导航|铁道科学与工程学报|基于灰色和神经网络的铁路客运量预测研究

基于灰色和神经网络的铁路客运量预测研究

冯冰玉 鲍学英 王起才

铁道科学与工程学报Issue(5):1227-1231,5.
铁道科学与工程学报Issue(5):1227-1231,5.

基于灰色和神经网络的铁路客运量预测研究

Research of railway passenger volu me forecast based on grey and neural network

冯冰玉 1鲍学英 1王起才1

作者信息

  • 1. 兰州交通大学 土木工程学院,甘肃 兰州 730070
  • 折叠

摘要

Abstract

Accurate forecast for passenger volume plays an important role in the national traffic planning and management.The accuracy of prediction is directly influenced by its prediction technique.There are two features of the prediction of traffic volume:small samples and nonlinear.According to the characteristics of the grey theo-ry and RBF neural network,the grey RBF neural network model was formed in this paper.Moreover,the pas-senger volume was forecasted by virtue of the traffic share rate.The initial data was first generated and processed within the framework of grey theory to turn the erratic than the raw data into a regular sequence generation.By u-sing the high adaptability and learning ability of RBF neural network,which can greatly accelerate the learning speed and avoid the local minimum problem to predict the generated sequence.At last,the high prediction of the grey -RBF neural network model for passenger traffic volume will be illustrated by Lanzhou to Zhongchuan air-port railway new project and the survey data.

关键词

客运量/预测/灰色理论/RBF 神经网络

Key words

passenger traffic volume/prediction/grey theory/RBF neural network

分类

交通工程

引用本文复制引用

冯冰玉,鲍学英,王起才..基于灰色和神经网络的铁路客运量预测研究[J].铁道科学与工程学报,2015,(5):1227-1231,5.

基金项目

长江学者和创新团队发展计划资助项目 ()

铁道科学与工程学报

OA北大核心CSCDCSTPCD

1672-7029

访问量0
|
下载量0
段落导航相关论文