| 注册
首页|期刊导航|电讯技术|基于加权最小二乘支持向量机的欠定盲源分离

基于加权最小二乘支持向量机的欠定盲源分离

赵立权 刘珊珊

电讯技术Issue(11):1200-1205,6.
电讯技术Issue(11):1200-1205,6.DOI:10.3969/j.issn.1001-893x.2015.11.003

基于加权最小二乘支持向量机的欠定盲源分离

Undetermined Blind Source Separation Based on Weighted Least Square Support Vector Machine

赵立权 1刘珊珊1

作者信息

  • 1. 东北电力大学 信息工程学院,吉林 吉林132012
  • 折叠

摘要

Abstract

To further improve the performance of the underdetermined blind source separation algorithm,an algorithm based on weighted least square support vector machine( WLS-SVM) is proposed. Firstly,it esti-mates the number of source signal using the characteristic of frequency domain signal. Secondly, it uses WLS-SVM to obtain the initial weight values. The sample point corresponding to one of the weight values is used as the test sample every time,and the other is used as training sample. The error variable is upda-ted sequentially,and then all weight values are updated according to the weight calculation formula to de-termine the optimal classification plane and realize optimal classification of observed signals to estimate the mixed matrix. Simulation results prove that the proposed algorithm has smaller error compared with tradi-tional algorithm. The error of proposed algorithm is twenty percent of that of K-means based method,and fifty percent of that of SVM-based method.

关键词

欠定盲源分离/加权最小二乘支持向量机/K-均值聚类/矩阵估计

Key words

undetermined blind source separation/weighted least square support vector machine/K-means clustering/matrix estimation

分类

信息技术与安全科学

引用本文复制引用

赵立权,刘珊珊..基于加权最小二乘支持向量机的欠定盲源分离[J].电讯技术,2015,(11):1200-1205,6.

基金项目

国家自然科学基金资助项目(61271115) (61271115)

吉林市科技发展项目(2013625009)Foundation Item:The National Natural Science Foundation of China(No.61271115) (2013625009)

The Scientific Research Fundation of the Education De-partment of Jilin Municipality(No.2013635009) (No.2013635009)

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文