| 注册
首页|期刊导航|化工学报|基于分布式ICA-PCA模型的工业过程故障监测

基于分布式ICA-PCA模型的工业过程故障监测

衷路生 何东 龚锦红 张永贤

化工学报Issue(11):4546-4554,9.
化工学报Issue(11):4546-4554,9.DOI:10.11949/j.issn.0438-1157.20150546

基于分布式ICA-PCA模型的工业过程故障监测

Fault monitoring of industrial process based on distributed ICA-PCA model

衷路生 1何东 1龚锦红 1张永贤1

作者信息

  • 1. 华东交通大学电气学院,江西南昌 330013
  • 折叠

摘要

Abstract

A fault monitoring method based on distributed independent component analysis-principal component analysis (ICA-PCA) model is proposed, which is suitable for complex industrial process that cannot be divided into several sub-blocks through an automatic way and has non-Gaussian information. Firstly, an initial PCA decomposition is carried out upon the variables of the whole process. By constructing sub-blocks through different directions of PCA principal components, the original feature space can be automatically divided into several sub-feature spaces. In addition, a two step extractions of the ICA-PCA information are carried on upon all sub-blocks in order to extract both Gaussian and non-Gaussian information, establishing the new statistics and their statistic limits. Finally, the simulation of TE process shows that the proposed fault detection model is efficient and feasible.

关键词

复杂工业过程/自动划分子块/非高斯/ICA-PCA/故障监测

Key words

complex industrial process/automatic partitioning sub-blocks/non-Gaussian/ICA-PCA/fault monitoring

分类

信息技术与安全科学

引用本文复制引用

衷路生,何东,龚锦红,张永贤..基于分布式ICA-PCA模型的工业过程故障监测[J].化工学报,2015,(11):4546-4554,9.

基金项目

国家自然科学基金项目(61263010,60904049);江西省自然科学基金项目(20114BAB211014);江西省教育厅项目(GJJ14399)。@@@@supported by the National Natural Science Foundation of China (61263010,60904049), the Natural Science Foundation of Jiangxi Province (20114BAB211014) and the Project of Education Department of Jiangxi Province (GJJ14399) (61263010,60904049)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文