| 注册
首页|期刊导航|红外技术|基于改进FCM算法的卫星云图聚类方法研究

基于改进FCM算法的卫星云图聚类方法研究

李秀馨 王敬东 徐烨晔 温家旺

红外技术Issue(3):150-154,5.
红外技术Issue(3):150-154,5.

基于改进FCM算法的卫星云图聚类方法研究

Satellite Image Clustering Research Based on Improved FCM Algorithm

李秀馨 1王敬东 1徐烨晔 1温家旺1

作者信息

  • 1. 南京航空航天大学自动化学院,江苏 南京 210016
  • 折叠

摘要

Abstract

Nephograms can be used to analyze the distribution of the cloud system in a large area, and to study the evolvement rules of weather system. We can analyze the nephograms without the interference of terrestrial and marine information by extract the clouds content from the nephograms. So fuzzy C-means(FCM) algorithm is used for satellite image clustering. The method is easy to understand, but it always converges to the local infinitesimal values. So PSO was introduced to FCM algorithm, which can find a globally optimal fuzzy segmentation so as to avoid the sensitivities of basic FCM algorithm to initial values. In order to improve the speed of the algorithm, the shadow sets algorithm was combined with FCM, which can remove boundary values and abnormal values. The results show that the clustering effect of the newly-proposed algorithm is better than the one of the basic FCM.

关键词

模糊C均值算法/阴影集/粒子群算法/卫星云图聚类

Key words

fuzzy C-means algorithm/shadow sets/PSO/satellite cloud image clustering

分类

信息技术与安全科学

引用本文复制引用

李秀馨,王敬东,徐烨晔,温家旺..基于改进FCM算法的卫星云图聚类方法研究[J].红外技术,2013,(3):150-154,5.

基金项目

国家自然科学基金(编号:61074161) (编号:61074161)

红外技术

OA北大核心CSCDCSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文