首页|期刊导航|井冈山大学学报(自然科学版)|基于小波包和RBF神经网络的压电加速度传感器故障诊断

基于小波包和RBF神经网络的压电加速度传感器故障诊断OA

DIAGNOSIS OF PIEZOELECTRIC ACCELERATION SENSOR FAULT BASED ON WAVELET PACKET AND RBF NEURAL NETWORK

中文摘要英文摘要

  根据压电加速度传感器故障的特点,提出运用小波包变换和 RBF 神经网络的故障诊断方法。首先运用小波包分解和重构原理将传感器输出信号分解到不同频段中,提取每个频段的能量作为状态监测的特征向量,作为RBF网络的输入,然后利用最佳的RBF神经网络进行压电传感器故障分类。实验结果表明该方法具有良好的非线性跟踪能力,较高的诊断准确率。

  According to the character of piezoelectric acceleration sensor fault, a new diagnosis method based on wavelet packet transform and RBF neural network is proposed to detect and identify sensor fault. The sensor fault signals are decomposed in different frequency bands by wavelet packet decomposition and reconstruction, and the energy of every band is used as the eigenvector of condition monitoring as well as input of RBF (Radial Basis Function) neural netw…查看全部>>

杜菲;马天兵

安徽理工大学机械工程学院,安徽,淮南 232001安徽理工大学机械工程学院,安徽,淮南 232001

信息技术与安全科学

压电加速度传感器小波包变换神经网络故障诊断

piezoelectric acceleration sensorwavelet packet transformneural networkfault

《井冈山大学学报(自然科学版)》 2013 (3)

54-57,4

安徽省高校优秀青年人才基金重点项目(2012SQRL045ZD)

10.3969/j.issn.1674-8085.2013.03.013

评论

您当前未登录!去登录点击加载更多...