| 注册
首页|期刊导航|计算机工程与应用|基于贝叶斯压缩感知的自适应测量算法

基于贝叶斯压缩感知的自适应测量算法

郭鹏

计算机工程与应用Issue(9):200-202,217,4.
计算机工程与应用Issue(9):200-202,217,4.DOI:10.3778/j.issn.1002-8331.1205-0325

基于贝叶斯压缩感知的自适应测量算法

Adaptive measurement algorithm based on Bayesian Compressive Sensing

郭鹏1

作者信息

  • 1. 中国电子信息产业发展研究院,北京 100048
  • 折叠

摘要

Abstract

To overcome the challenge of traditional Compressive Sensing without adaptive measurement ability, the theory of Bayesian Compressive Sensing is briefly introduced. An evaluation index based on differential entropy of estimated signal is devised and the adaptive compressive measurement procedure without any prior information about the measured signals is pre-sented in block manner. Numerical simulations on random step signal verify that the adaptive algorithm has good performance. This algorithm offers great potential for adaptive compressive measuring.

关键词

压缩感知/贝叶斯估计/自适应测量/微分熵/重构误差

Key words

Compressive Sensing(CS)/Bayesian estimation/adaptive measurement/differential entropy/reconstruction error

分类

数理科学

引用本文复制引用

郭鹏..基于贝叶斯压缩感知的自适应测量算法[J].计算机工程与应用,2013,(9):200-202,217,4.

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文