| 注册
首页|期刊导航|计算机工程与应用|基于流形学习的异常检测算法研究

基于流形学习的异常检测算法研究

刘凯伟 张冬梅

计算机工程与应用Issue(13):105-109,5.
计算机工程与应用Issue(13):105-109,5.DOI:10.3778/j.issn.1002-8331.1111-0210

基于流形学习的异常检测算法研究

Manifold learning-based anomaly detection algorithm

刘凯伟 1张冬梅1

作者信息

  • 1. 中国地质大学 计算机学院,武汉 430074
  • 折叠

摘要

Abstract

Anomaly detection has important significance in many fields. Essentially speaking, the recognition of geochemical anomalies is the problem of imbalanced data classification. The main problems faced by anomaly identification is the processing problems of high-dimensional data, manifold learning is a nonlinear dimensionality reduction method that can reasonably reduce the data dimension. Therefore this paper proposes an anomaly detection algorithm based on the manifold learning, through mani-fold learning to achieve the dimension reduction, the new algorithm combines AdaCost technology of integrated learning, to im-prove classification performance. The new algorithm is based on the simulation experiment on the research objection of polyme-tallic deposits such as tin and copper from Gejiu, Yunnan province. The experimental results show that predicted results for the new algorithm delineating regional geochemical anomalies are better than traditional methods, which can more accurately identify the forming-ore abnormality.

关键词

异常检测分类/不均衡数据/流形学习/代价敏感学习

Key words

anomaly detection/unbalanced data/manifold learning/cost-sensitive learning

分类

信息技术与安全科学

引用本文复制引用

刘凯伟,张冬梅..基于流形学习的异常检测算法研究[J].计算机工程与应用,2013,(13):105-109,5.

基金项目

国家自然科学基金(No.40972206);中央高校基本科研业务费专项资金资助项目(No.1323520909)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文