| 注册
首页|期刊导航|计算机工程与应用|基于邻域场拉普拉斯混合模型图像分割的研究

基于邻域场拉普拉斯混合模型图像分割的研究

罗雷 王士同

计算机工程与应用Issue(13):133-137,244,6.
计算机工程与应用Issue(13):133-137,244,6.DOI:10.3778/j.issn.1002-8331.1301-0256

基于邻域场拉普拉斯混合模型图像分割的研究

Laplacian mixture model with neighborhood field for image segmentation

罗雷 1王士同1

作者信息

  • 1. 江南大学 数字媒体学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

Finite mixture model under Laplacian distribution is proposed in order to solve the problem that image segmentation based on Gaussian Mixture Model(GMM)failing to settle tailing situation with heavy-tailed noise, besides, unlike the standard Laplacian Mixture model(LMM)where pixels themselves are considered independent of each other, the proposed method incor-porates the spatial neighborhood relationship of pixels into the standard LMM. In order to estimate model parameters from obser-vations and instead of utilizing an expectation-maximization algorithm, the gradient method is adopted. The experimental results demonstrate the robustness, accuracy, and effectiveness of the method in comparison with the standard LMM and GMM.

关键词

拉普拉斯混合模型(LMM)/图像分割/重尾噪声/空间邻域关系

Key words

Laplacian Mixture Model(LMM)/image segmentation/heavy-tailed noise/spatial neighborhood relationship

分类

信息技术与安全科学

引用本文复制引用

罗雷,王士同..基于邻域场拉普拉斯混合模型图像分割的研究[J].计算机工程与应用,2013,(13):133-137,244,6.

基金项目

国家自然科学基金(No.61272210)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文