| 注册
首页|期刊导航|计算机工程与应用|基于k均值聚类的直推式支持向量机学习算法

基于k均值聚类的直推式支持向量机学习算法

王立梅 李金凤 岳琪

计算机工程与应用Issue(14):144-146,3.
计算机工程与应用Issue(14):144-146,3.DOI:10.3778/j.issn.1002-8331.1301-0195

基于k均值聚类的直推式支持向量机学习算法

k means clustering based transductive support vector machine algorithm.

王立梅 1李金凤 1岳琪2

作者信息

  • 1. 牡丹江师范学院 工学院,黑龙江 牡丹江 157011
  • 2. 东北林业大学 信息与计算机工程学院,哈尔滨 150040
  • 折叠

摘要

Abstract

As transductive support vector machine runs slowly, this paper proposes ak means clustering based transductive sup-port vector machine algorithm. The algorithm utilizes k means clustering to divide the unlabeled samples into several clusters, labels them with the same class, makes transductive inference on the mixed data set composed by both labeled and unlabeled samples. As TSVMKMC algorithm reduces the size of the state space effectively, the running speed is improved largely. The experimental results show that the algorithm can achieve good classification accuracy with faster speed.

关键词

直推式学习/支持向量机/k均值聚类/无标签样本

Key words

transductive inference/support vector machine/k means clustering/unlabeled samples

分类

信息技术与安全科学

引用本文复制引用

王立梅,李金凤,岳琪..基于k均值聚类的直推式支持向量机学习算法[J].计算机工程与应用,2013,(14):144-146,3.

基金项目

黑龙江省自然科学基金(No.F200919);牡丹江市科技局攻关项目(No.G2011a852);牡丹江师范学院基金项目(No.QZ201212)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文