| 注册
首页|期刊导航|计算机工程与应用|基于结构化稀疏模型的压缩感知重构改进算法

基于结构化稀疏模型的压缩感知重构改进算法

杨爱萍 栗改 侯正信 庞茜

计算机工程与应用Issue(14):203-206,4.
计算机工程与应用Issue(14):203-206,4.DOI:10.3778/j.issn.1002-8331.1202-0550

基于结构化稀疏模型的压缩感知重构改进算法

New recovery algorithm for compressed sensing based on structured sparse model.

杨爱萍 1栗改 1侯正信 1庞茜1

作者信息

  • 1. 天津大学 电子信息工程学院,天津 300072
  • 折叠

摘要

Abstract

Recently, normal recovery algorithms for CS only use signal and image sparse priors under wavelet, make no use of the tree structure priors. In order to reconstruct the original signal quickly and accurately, this paper brings the tree structure sparse model into SP algorithm , CoSaMP-algorithm and gets the improved recovery algorithm for compressed sensing. Combin-ing with structured sparse model and dual-tree complex wavelet transform, a new recovery algorithm for CS is proposed. The simulated results show that the algorithm can achieve higher reconstructed image performance.

关键词

压缩感知/结构化稀疏模型/双树复小波变换

Key words

Compressed Sensing(CS)/structured sparse model/dual-tree complex wavelet transform

分类

信息技术与安全科学

引用本文复制引用

杨爱萍,栗改,侯正信,庞茜..基于结构化稀疏模型的压缩感知重构改进算法[J].计算机工程与应用,2013,(14):203-206,4.

基金项目

国家自然科学基金(No.61002027)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文