| 注册
首页|期刊导航|计算机工程与应用|一种多分类器联合的集成网络流量分类方法

一种多分类器联合的集成网络流量分类方法

孔蓓蓓 唐学文 汪为汉

计算机工程与应用Issue(17):82-84,163,4.
计算机工程与应用Issue(17):82-84,163,4.DOI:10.3778/j.issn.1002-8331.1112-0243

一种多分类器联合的集成网络流量分类方法

Network traffic classification based on combination of multi-classifiers

孔蓓蓓 1唐学文 2汪为汉1

作者信息

  • 1. 重庆大学 计算机学院,重庆 400030
  • 2. 重庆大学 信息与网络管理中心,重庆 400030
  • 折叠

摘要

Abstract

Traditionally, in the area of the network traffic classification, there exists a problem that single learning algorithm lacks classification accuracy and is incapable of adapting to the dynamic network environment. Accordingly, it proposes a novel classification approach which is a combination of multi-classifier. This method combines the features of a range of classifiers and then achieves traffic classification by means of majority voting and instance selection. Moreover, comparative experiments show that this method improves the classification accuracy, the generalization performance and the ability to adapt to the dynamic network environment. However, it is worth noting that the method has a larger implement complexity and time complexity than these of single algorithm.

关键词

流量分类/支持向量机/C4.5决策树/贝叶斯网/集成学习

Key words

traffic classification/Support Vector Machine(SVM)/C4.5 decision tree/Bayesian Net(BN)/ensemble learning

分类

信息技术与安全科学

引用本文复制引用

孔蓓蓓,唐学文,汪为汉..一种多分类器联合的集成网络流量分类方法[J].计算机工程与应用,2013,(17):82-84,163,4.

基金项目

国家自然科学基金(No.71102065)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文