| 注册
首页|期刊导航|计算机工程与应用|基于聚类权重分阶段的SVM解不平衡数据集分类

基于聚类权重分阶段的SVM解不平衡数据集分类

王超学 张涛 马春森

计算机工程与应用Issue(21):133-137,5.
计算机工程与应用Issue(21):133-137,5.DOI:10.3778/j.issn.1002-8331.1311-0145

基于聚类权重分阶段的SVM解不平衡数据集分类

Resolution of classification for imbalanced dataset based on clus-ter-weight and grading-SVM algorithm

王超学 1张涛 1马春森2

作者信息

  • 1. 西安建筑科技大学 信息与控制工程学院,西安 710055
  • 2. 中国农业科学院 植物保护研究所,北京 100193
  • 折叠

摘要

Abstract

Based on analyzing the shortages of SVM(Support Vector Machine)algorithm in solving classification problems on imbalanced dataset, a novel SVM approach based on cluster-weight technology and based-grading SVM classifier(short as WSVM)is presented in this paper that considers the uneven distribution of training sample between classes and within classes. The specific steps are as follows:when preprocessing, it uses K-means algorithm based on weight assignment model to obtain the weights of the majority samples. Classification is consisted of three phases. It selects the located in each cluster boundary majority samples, which is equal with the minority samples in quantity, then classifies the minority samples and selects samples, and adjusts the initial classifier through the unselected majority samples. When it comes to satisfy the explicit stopping criteria, the final classifier is got. A large amount of experiments by the UCI dataset show that WSVM can significantly improve the identification rate of the minority samples and overall classification performance.

关键词

不平衡数据集/权重分配模型/支持向量机(SVM)

Key words

imbalanced dataset/weight assignment model/Support Vector Machine(SVM)

分类

信息技术与安全科学

引用本文复制引用

王超学,张涛,马春森..基于聚类权重分阶段的SVM解不平衡数据集分类[J].计算机工程与应用,2015,(21):133-137,5.

基金项目

国家自然科学基金(No.31170393);陕西省自然科学基金(No.2012JM8023);陕西省教育厅自然科学基金专项(No.12JK0726)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文