| 注册
首页|期刊导航|计算机科学与探索|MapReduce框架下并行知识约简算法模型研究

MapReduce框架下并行知识约简算法模型研究

钱进 苗夺谦 张泽华 张志飞

计算机科学与探索Issue(1):35-45,11.
计算机科学与探索Issue(1):35-45,11.DOI:10.3778/j.issn.1673-9418.1206048

MapReduce框架下并行知识约简算法模型研究

Parallel Algorithm Model for Knowledge Reduction Using MapReduce􀆽

钱进 1苗夺谦 2张泽华 3张志飞1

作者信息

  • 1. 同济大学 计算机科学与技术系,上海 201804
  • 2. 江苏理工学院 计算机工程学院,江苏 常州 213001
  • 3. 同济大学 嵌入式系统与服务计算教育部重点实验室,上海 201804
  • 折叠

摘要

Abstract

Knowledge reduction for massive datasets has attracted many research interests in rough set theory. Clas-sical knowledge reduction algorithms assume that all datasets can be loaded into the main memory of a single machine, which are infeasible for large-scale data. Firstly, this paper analyzes the parallel computations among classical knowledge reduction algorithms. Then, in order to compute the equivalence classes and attribute significance on different candidate attribute sets, it designs and implements the Map and Reduce functions using data and task paral-lelism. Finally, it constructs the parallel algorithm framework model for knowledge reduction using MapReduce, which can be used to compute a reduct for the algorithms based on positive region, discernibility matrix or information entropy. The experimental results demonstrate that the proposed parallel knowledge reduction algorithms can efficiently process massive datasets on Hadoop platform.

关键词

MapReduce/粗糙集/知识约简/数据并行/任务并行

Key words

MapReduce/rough set/knowledge reduction/data parallel/task parallel

分类

信息技术与安全科学

引用本文复制引用

钱进,苗夺谦,张泽华,张志飞..MapReduce框架下并行知识约简算法模型研究[J].计算机科学与探索,2013,(1):35-45,11.

基金项目

The National Natural Science Foundation of China under Grant Nos.60970061,61075056,61103067(国家自然科学基金) (国家自然科学基金)

the Fun-damental Research Funds for the Central Universities of China ()

(中央高校基本科研业务费专项资金) (中央高校基本科研业务费专项资金)

计算机科学与探索

OACSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文