农业工程学报Issue(3):250-257,8.DOI:10.3969/j.issn.1002-6819.2013.03.033
螺旋不连续加料装置结构优化与性能仿真
Structure optimization and performance simulation of screw discontinuous feeding device
摘要
Abstract
Discontinuous, quantitative materials feeding is an important process in industrial and agricultural production. Adapting a spiral feeding device to operate in a discontinuous mode has many advantages, such as good sealing properties, high energy efficiency, simple structure, more effective and better control. Compared with the traditional discrete- quantitative design, converting a spiral feeding device to achieve discontinuous quantitative feeding can shift the quantitative method from passive measuring feeding to active quantitative feeding. It also omits the weight measuring procedure, so as to improve the process-monitoring efficiency with a broad prospect of application. To deal with the instability of materials feed rates and the high-energy consumption of discontinuous spiral feeding device, structure optimization and performance simulation were studied in this paper. The performance index of spiral feeding and the different structural parameters' effects on discontinuous feeding performance were analyzed firstly. Moreover, with the spiral discontinuous feeding device of 100 mm outer diameter as the research subject, minimizing the energy consumption per unit of feeding amount as the optimization goal,the inner diameter,the pitch, and the operating speed were chosen as optimization variables. On the basis of certain constraints, a stochastic direction method was used to acquire the optimization results:speed of 65 r/min, inner diameter of 40 mm, and thread pitch of 85 mm. Furthermore, the discrete element method was used to simulate the effect of changing the inner diameter and pitch on feeding performance, such as particle filling rate, feeding rate variation, and energy consumption. The simulation results showed that: (1) with an outside diameter was 100 mm, the thread pitch 100 mm, and the speed 65 r/min, as the inner diameter increased the feed rate of the spiral feeding device decreased, and the change of average particle filling rate was not obvious; but when the inner diameter was too small or too great, the energy consumption and the fluctuation in particle-filling rate both increased. When the inner diameter was the commonly used size of 50 mm, the performance of feed stability and energy consumption was better; (2) when the outside diameter was 100 mm, the inner diameter 50 mm, and the speed 65 r/min, as thread pitch increased, the feed rate of spiral feeding device increased gradually, and the average particle filling rate decreased slowly, but when the thread pitch was too small or too great, the energy consumption and the fluctuations in particle-filling rate both increased. When the thread pitch of 100 mm was the standard size, the performance of feed stability and energy consumption was better; (3) with an outside diameter of 100 mm and the speed of 65 r/min were unchanged, the inner diameter of 40 mm and the thread pitch of 85 mm were optimal, and the feed-rate stability, energy consumption, and overall performance of the spiral feeding device were superior to other conditions.关键词
优化/设计/能效/螺旋加料装置/不连续加料/离散单元法/性能仿真Key words
optimization/design/energy efficiency/screw feeding device/discontinuous feeding/discrete element method/simulation分类
机械制造引用本文复制引用
罗胜,张西良,许俊,马奎..螺旋不连续加料装置结构优化与性能仿真[J].农业工程学报,2013,(3):250-257,8.基金项目
国家自然科学基金资助项目(51175230) (51175230)
江苏大学高级专业人才科研启动基金资助项目(08JDG048) (08JDG048)
江苏大学大学生科研立项资助项目(11A374) (11A374)