| 注册
首页|期刊导航|计算机技术与发展|基于函数最优解问题的粒子群算法改进

基于函数最优解问题的粒子群算法改进

王莉荣 祁云嵩

计算机技术与发展Issue(2):49-51,56,4.
计算机技术与发展Issue(2):49-51,56,4.DOI:10.3969/j.jssn.1673-2013.02.012

基于函数最优解问题的粒子群算法改进

Partical Swarm Optimization Improvement Based on Optimal Solution to Functions

王莉荣 1祁云嵩1

作者信息

  • 1. 江苏科技大学 计算机科学与工程学院,江苏 镇江 212003
  • 折叠

摘要

Abstract

A depth-research found that partical swarm algorithm is easy to fall into local minima,iterative post-slow rate of convergence, low accuracy and so on,then many scholars have made improvements and successfully applied to a variety of practical problems. In order to improve the performance of partical swarm optimization,it works over the particle swarm optimization and the proved methods in order to solve the function of the optimal solution fastly and accurately. And it combines the time-varying weights with the constriction factor to improve the partical swarm optimization. Then use the method to solve the optimal solution of functions. Experiments show that the method has the advantages with the band time-varying weights or with a compression factor algorithm,at the same time makes the con-vergence faster,improves the accuracy of the optimal solution of the function,and improve the performance by adjusting parameters.

关键词

粒子群算法/压缩因子/时变权重

Key words

partical swarm optimization algorithm/conpression factor/time-varying weights

分类

信息技术与安全科学

引用本文复制引用

王莉荣,祁云嵩..基于函数最优解问题的粒子群算法改进[J].计算机技术与发展,2013,(2):49-51,56,4.

基金项目

国家自然科学基金资助项目(61100116) (61100116)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文