| 注册
首页|期刊导航|计算机技术与发展|差分进化算法马尔可夫链模型及收敛性分析

差分进化算法马尔可夫链模型及收敛性分析

孙成富 赵建洋 陈剑洪

计算机技术与发展Issue(8):62-65,4.
计算机技术与发展Issue(8):62-65,4.DOI:10.3969/j.issn.1673-629X.2013.08.016

差分进化算法马尔可夫链模型及收敛性分析

Analysis of Differential Evolution's Markov Chain Model and Convergence

孙成富 1赵建洋 1陈剑洪1

作者信息

  • 1. 淮阴工学院 计算机工程学院,江苏 淮安 223003
  • 折叠

摘要

Abstract

As a modern optimization algorithm,differential evolution algorithm which is based on the individual differential reconstruction idea is designed for the global continuous optimization problem. Up to now,the improvement and application of the algorithm are mainly focused by researchers but theoretical analysis of the algorithm is seldom taken into account. In order to analyze the convergence of the al-gorithm,the concepts of state transition for individual and population are defined and the optimal state set of population is proposed. The individual state transition probability is computed according to the operators of differential evolution algorithm. The state sequence of pop-ulation has been proved to be Finite Nonhomogeneous Markov chain and the Markov chain model of differential evolution is proposed. At last,the theory analysis of the differential evolution demonstrates that it is not able to guarantee the global convergence. The result of the theory research shows that keeping the population diversity will improve the performance of the algorithm.

关键词

差分进化/马尔可夫链/收敛性分析/全局收敛/局部收敛

Key words

differential evolution/Markov chain/convergence analysis/global convergence/local convergence

分类

信息技术与安全科学

引用本文复制引用

孙成富,赵建洋,陈剑洪..差分进化算法马尔可夫链模型及收敛性分析[J].计算机技术与发展,2013,(8):62-65,4.

基金项目

江苏省科技支撑计划(BE2012112) (BE2012112)

淮安市科技支撑计划(工业)项目(HAG2011044,HAG2011045) (工业)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文