| 注册
首页|期刊导航|计算机技术与发展|面向不平衡数据的模糊支持向量机

面向不平衡数据的模糊支持向量机

刘凌 郭剑 韩崇

计算机技术与发展2015,Vol.25Issue(11):38-43,48,7.
计算机技术与发展2015,Vol.25Issue(11):38-43,48,7.DOI:10.3969/j.issn.1673-629X.2015.11.008

面向不平衡数据的模糊支持向量机

Fuzzy Support Vector Machine for Imbalanced Data

刘凌 1郭剑 1韩崇1

作者信息

  • 1. 南京邮电大学 计算机学院,江苏 南京 210003
  • 折叠

摘要

Abstract

Traditional Fuzzy Support Vector Machines (FSVM) are sensitive to imbalanced data. They compute their fuzzy memberships mainly according to the factor of distance,which can not reflect the importance of the samples precisely and may lead to an error of classi-fication results. To these problems,an improved FSVM is proposed in this paper. In the proposed FSVM,samples are firstly separated into different categories based on sample densities, and then they are assigned different fuzzy memberships. This method may improve the weight of support vectors and reduce the influence of outlier and noise points. Furthermore,the imbalanced factor is introduced to improve the classification precision of imbalanced data. The experimental results show that the improved FSVM has better performance for imbal-anced data with more outlier and noise points.

关键词

支持向量机/模糊支持向量机/不平衡数据集/样本密度

Key words

support vector machine/FSVM/imbalanced data/sample density

分类

信息技术与安全科学

引用本文复制引用

刘凌,郭剑,韩崇..面向不平衡数据的模糊支持向量机[J].计算机技术与发展,2015,25(11):38-43,48,7.

基金项目

国家自然科学基金资助项目(61171053,61300239) (61171053,61300239)

教育部博士点基金资助项目(20113223110002) (20113223110002)

中国博士后科学基金资助项目(2014M551635) (2014M551635)

江苏省博士后科研资助计划项目(1302085B) (1302085B)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文